135 research outputs found

    Analytic Results in 2D Causal Dynamical Triangulations: A Review

    Get PDF
    We describe the motivation behind the recent formulation of a nonperturbative path integral for Lorentzian quantum gravity defined through Causal Dynamical Triangulations (CDT). In the case of two dimensions the model is analytically solvable, leading to a genuine continuum theory of quantum gravity whose ground state describes a two-dimensional "universe" completely governed by quantum fluctuations. One observes that two-dimensional Lorentzian and Euclidean quantum gravity are distinct. In the second part of the review we address the question of how to incorporate a sum over space-time topologies in the gravitational path integral. It is shown that, provided suitable causality restrictions are imposed on the path integral histories, there exists a well-defined nonperturbative gravitational path integral including an explicit sum over topologies in the setting of CDT. A complete analytical solution of the quantum continuum dynamics is obtained uniquely by means of a double scaling limit. We show that in the continuum limit there is a finite density of infinitesimal wormholes. Remarkably, the presence of wormholes leads to a decrease in the effective cosmological constant, reminiscent of the suppression mechanism considered by Coleman and others in the context of a Euclidean path integral formulation of four-dimensional quantum gravity in the continuum. In the last part of the review universality and certain generalizations of the original model are discussed, providing additional evidence that CDT define a genuine continuum theory of two-dimensional Lorentzian quantum gravity.Comment: 66 pages, 17 figures. Based on the author's thesis for the Master of Science in Theoretical Physics, supervised by R. Loll and co-supervised by J. Ambjorn, J. Jersak, July 200

    Counting entropy in causal set quantum gravity

    Get PDF
    The finiteness of black hole entropy suggest that spacetime is fundamentally discrete, and hints at an underlying relationship between geometry and "information". The foundation of this relationship is yet to be uncovered, but should manifest itself in a theory of quantum gravity. We review recent attempts to define a microscopic measure for black hole entropy and for the maximum entropy of spherically symmetric spacelike regions, within the causal set approach to quantum gravity.Comment: 5 pages, 1 figure. Talk given by S. Zohren at the Eleventh Marcel Grossmann Meeting on General Relativity at the Freie U. Berlin, July 23 - 29, 200

    A note on weak convergence results for uniform infinite causal triangulations

    Full text link
    We discuss uniform infinite causal triangulations and equivalence to the size biased branching process measure - the critical Galton-Watson branching process distribution conditioned on non-extinction. Using known results from the theory of branching processes, this relation is used to prove weak convergence of the joint length-area process of a uniform infinite causal triangulations to a limiting diffusion. The diffusion equation enables us to determine the physical Hamiltonian and Green's function from the Feynman-Kac procedure, providing us with a mathematical rigorous proof of certain scaling limits of causal dynamical triangulations.Comment: 23 pages, 2 figure

    Nonperturbative sum over topologies in 2D Lorentzian quantum gravity

    Full text link
    The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a nonperturbative implementation of the sum over topologies in the gravitational path integral in 1+1 dimensions. The dynamics of this model shows that the presence of infinitesimal wormholes leads to a decrease in the effective cosmological constant. Similar ideas have been considered in the past by Coleman and others in the formal setting of 4D Euclidean path integrals. A remarkable property of the model is that in the continuum limit we obtain a finite space-time density of microscopic wormholes without assuming fundamental discreteness. This shows that one can in principle make sense out of a gravitational path integral including a sum over topologies, provided one imposes suitable kinematical restrictions on the state-space that preserve large scale causality.Comment: 10 pages, 4 figures. Talk given by S. Zohren at the Albert Einstein Century International Conference (Paris, July 18-22 2005

    A tight Tsirelson inequality for infinitely many outcomes

    Full text link
    We present a novel tight bound on the quantum violations of the CGLMP inequality in the case of infinitely many outcomes. Like in the case of Tsirelson's inequality the proof of our new inequality does not require any assumptions on the dimension of the Hilbert space or kinds of operators involved. However, it is seen that the maximal violation is obtained by the conjectured best measurements and a pure, but not maximally entangled, state. We give an approximate state which, in the limit where the number of outcomes tends to infinity, goes to the optimal state for this setting. This state might be potentially relevant for experimental verifications of Bell inequalities through multi-dimenisonal entangled photon pairs.Comment: 5 pages, 2 figures; improved presentation, change in title, as published

    Proper time is stochastic time in 2d quantum gravity

    Full text link
    We show that proper time, when defined in the quantum theory of 2d gravity, becomes identical to the stochastic time associated with the stochastic quantization of space. This observation was first made by Kawai and collaborators in the context of 2d Euclidean quantum gravity, but the relation is even simpler and more transparent in he context of 2d gravity formulated in the framework of CDT (causal dynamical triangulations).Comment: 30 pages, Talk presented at the meeting "Foundations of Space and Time", Cape Town, 10-14 August 2009. To appear in the proceedings, CU

    A Causal Alternative for c=0 Strings

    Full text link
    We review a recently discovered continuum limit for the one-matrix model which describes "causal" two-dimensional quantum gravity. The behaviour of the quantum geometry in this limit is different from the quantum geometry of Euclidean two-dimensional quantum gravity defined by taking the "standard" continuum limit of the one-matrix model. Geodesic distance and time scale with canonical dimensions in this new limit, contrary to the situation in Euclidean two-dimensional quantum gravity. Remarkably, whenever we compare, the known results of (generalized) causal dynamical triangulations are reproduced exactly by the one-matrix model. We complement previous results by giving a geometrical interpretation of the new model in terms of a generalization of the loop equation of Euclidean dynamical triangulations. In addition, we discuss the time evolution of the quantum geometry.Comment: 10 pages, 4 figures, Presented at "The 48th Cracow School of Theoretical Physics: Aspects of Duality", June 13-22, 2008, Zakopane, Polan
    • …
    corecore